“融合•创新”国际学术交流沙龙第十六场活动预告:Manipulating tandem gene repeats via genome evolution mechanisms in yeast metabolic engineering optimization

来源:​生物工程学院 国际教育学院 2024-11-25 16:07 浏览:
演讲者 Dr. Bingyin Peng 演讲时间 2024年11月28日,周四15:00-16:00
地点 34号楼生物工程学院1313会议室 分类
职位 摄影
审核 审校
主要负责 联系学院
事记时间

告题目:Manipulating tandem gene repeats via genome evolution mechanisms in yeast metabolic engineering optimization

报告人姓名: Dr. Bingyin Peng

报告时间:2024年11月28日,周四15:00-16:00

报告地点34号楼生物工程学院1313会议室

报告人及内容简介:

Bingyin Peng’s research focuses on in east engineering & industrial genetics. He obtained his Masters’ degree at Shandong University and PhD degree at the University of Queensland. He was awarded with a CSIRO synthetic biology future fellowship and worked at the ARC Centre of Excellence in Synthetic Biology (Queensland University of Technology Node). His career has been focusing on yeast engineering to develop the superior strains for utilisation of C5 sugars and production of value-added chemicals from cane sugars -- the tasks in biomass refinery theme. His current scientific interest areas include fundamental microbial genetics, metabolic engineering, molecular genetic evolution, and rational genetic design. He is interested in applying his scientific findings to create industrial biotechnology applications for sustainable biomanufacturing and economic growth in remote regions.

Tandemly repeated genes, in the form of an array of two or more copies of a gene, commonly exist in cell genomes. They can be manipulated as a synthetic biology mechanism to increase gene dosage, which may deliver a phenotypic advantage for production of targeted products in microbial cell factories. We develop synthetic genome evolution mechanisms to engineer tandem gene repeats on yeast chromosome, and we also characterize the natural occurrence of such repeats during yeast engineering. (1) We have deployed a haploinsufficiency-driven gene amplification (HapAmp) tool in Saccharomyces cerevisiae. This tool applies an evolutionary molecular principle to lock transgene with a haploinsufficient gene, a gene tightly controlling cell growth. Through tuning the haploinsufficient gene dosage per copy, this tool enables stable integration of 4-50 copies of transgenes. Increased gene copies improved production of protein and small molecules in yeast. Second, we characterized the chromosome integration of the classical 2-micron episomal yeast plasmid, which generated the pools of yeast clones with diversified genotypes and phenotypes. From the pools, yeast clones with optimized production of terpene products were isolated. (3) we developed a bacterial toxin-antitoxin-driven gene amplification (ToxAmp) tool and visualized the evolutionary trajectory of tandem gene repeats at the single-colony levels to understand their stabilities. Applying these tools, we achieved grams-per-liter production of monoterpenes and sesquiterpenes in flask cultivation. Synthetic genome evolutionary mechanisms can be a new focus in metabolic engineering for pathway optimization and creating perturbation pools for understanding metabolic control mechanisms.


生物工程学院 国际教育学院
2024年11月25日

(责任编辑:李翰)